
Math 245 Spring 2013 Midterm Solutions

1. Find a formula involving the connectives ∨,∧, and ¬ that has this truth table:

P Q ??? P ∧Q ¬(P ∧Q) P ∨Q (¬(P ∧Q)) ∧ (P ∨Q)
F F F F T F F
F T T F T T T
T F T F T T T
T T F T F T F

Answer: (¬(P ∧Q)) ∧ (P ∨Q). Other answers are possible.

2. What can we put in the blank to make the identity correct?
(A M B) ∩ C = (C \ A) M

Answer: C \ B. The simplest justifi-
cation is by Venn diagram. A M B
is the regions 1, 2, 5, 6; intersecting
with C gives the regions 5, 6. C \ A
is the regions 4, 6, while C \ B is
the regions 4, 5. Taking the symmet-
ric difference gives the regions 5, 6.

3. Find a formula involving only the connectives ¬ and → that is equivalent to P ↔ Q.

Answer: ¬((P → Q)→ ¬(Q→ P )). This is equivalent to ¬(¬(P → Q) ∨ ¬(Q→ P ))
by the conditional law, which is equivalent to ¬¬(P → Q)∧¬¬(Q→ P ) by the second
DeMorgan’s law, which is equivalent to (P → Q) ∧ (Q → P ) by the double negation
law (twice), which is equivalent to P ↔ Q by the definition of biconditional.

4. Determine whether or not the following statements are equivalent: (∃x ∈ A P (x)) ∧
(∃x ∈ B P (x)) and ∃x ∈ (A ∩B) P (x).

Answer: no. Here is a counterexample: let A = {2, 4}, B = {3}, and let P (x) stand
for the sentence “x is prime”. A,B each contains a prime, but A∩B is empty, so does
not contain a prime.

5. Prove that P(A ∩B) = P(A) ∩P(B).

⊆: Let x ∈ P(A ∩ B). Then x ⊆ A ∩ B. For all y ∈ x, y ∈ A ∩ B. In particular,
∀y ∈ x, y ∈ A (thus x ⊆ A) and ∀y ∈ x, y ∈ B (thus x ⊆ B). Because x ⊆ A,
x ∈P(A); because x ⊆ B, x ∈P(B). Combining these we get x ∈P(A) ∩P(B).

⊇: Let x ∈P(A)∩P(B). Then x ∈P(A) and x ∈P(B), so x ⊆ A and x ⊆ B. For
all y ∈ x, y ∈ A and y ∈ B, so y ∈ A ∩B. Hence x ⊆ A ∩B and thus x ∈P(A ∩B).



6. Suppose that A \B ⊆ C ∩D and x ∈ A. Prove that if x /∈ D then x ∈ B.

Suppose that A \B ⊆ C ∩D, x ∈ A, and x /∈ B. Combining x ∈ A and x /∈ B we get
x ∈ A \ B. Because A \ B ⊆ C ∩D we get x ∈ C ∩D, and in particular x ∈ D. We
have proved that x /∈ B implies x ∈ D; the contrapositive of this is the desired goal.

7. Suppose that x, y ∈ R. Prove that if x 6= 0, then if y = 3x2+2y
x2+2

then y = 3.

Suppose that x 6= 0 and y = 3x2+2y
x2+2

. Multiplying by the nonzero x2 + 2 we get
yx2 + 2y = 3x2 + 2y. Subtracting 2y we get yx2 = 3x2. Dividing by the nonzero x2 we
get y = 3, as desired.

8. Prove that if A and B \ C are disjoint, then A ∩B ⊆ C.

Suppose that A and B \ C are disjoint. Let x ∈ A ∩ B; hence x ∈ A and x ∈ B. We
argue by contradiction. Suppose that x /∈ C. Combining with x ∈ B we get x ∈ B \C.
But also x ∈ A; yet A and B \ C are disjoint. This contradiction proves that x ∈ C.
Since x was arbitrary in A ∩B, we have shown that A ∩B ⊆ C.

9. Prove that for every integer n, n3 is even iff n is even.

Let n be an integer. We proceed by cases, depending on if n is even or odd. If n is
even, then for some integer m, n = 2m. Then n3 = (2m)3 = 8m3 = 2(4m3), twice an
integer, which is even. This proves that if n is even then n3 is even.

If n is odd, then for some integer k, n = 2k + 1. Then n3 = (2k + 1)3 = 8k3 + 12k2 +
6k + 1 = 2(4k3 + 6k2 + 3k) + 1, which is odd. This proves that if n is not even, then
n3 is not even.

10. Prove that for any sets A and B, if P(A)∪P(B) = P(A∪B) then either A ⊆ B or
B ⊆ A.

(method 1) Suppose that P(A) ∪P(B) = P(A ∪ B). We argue by contradiction.
Suppose that ¬(A ⊆ B ∨ B ⊆ A) holds. Hence ¬(A ⊆ B) ∧ ¬(B ⊆ A) holds, by
DeMorgan’s second law. Hence ¬(∀x ∈ A x ∈ B) ∧ ¬(∀y ∈ B y ∈ A). Hence
(∃x ∈ A x /∈ B) ∧ (∃y ∈ B y /∈ A). Now, consider the set {x, y}; let’s name it z.
Since x, y ∈ A ∪ B, we have z ⊆ A ∪ B so z ∈ P(A ∪ B). But z 6⊆ A since y /∈ A;
hence z /∈ P(A). Also, z 6⊆ B since x /∈ B; hence z /∈ P(B). But this contradicts
z ∈P(A) ∪P(B), which completes the proof.

(method 2) Suppose that P(A) ∪P(B) = P(A ∪ B). We argue by cases. Either
A ⊆ B or A 6⊆ B. In the first case, we are done. In the second case, ¬(A ⊆ B) holds,
so ¬(∀x ∈ A x ∈ B). This implies that ∃x ∈ A x /∈ B. Now, let y ∈ B. Consider the
set {x, y}; let’s name it z. Since x, y ∈ A∪B, we have z ⊆ A∪B so z ∈P(A∪B). But
z 6⊆ B since x /∈ B; hence z /∈P(B). Because z ∈P(A) ∪P(B), in fact z ∈P(A).
Hence y ∈ A. Since y ∈ B was arbitrary, we have proved that B ⊆ A.


