Math 245 Spring 2013 Midterm Solutions

1. Find a formula involving the connectives \vee, \wedge, and \neg that has this truth table:

P	Q	$? ? ?$	$P \wedge Q$	$\neg(P \wedge Q)$	$P \vee Q$	$(\neg(P \wedge Q)) \wedge(P \vee Q)$
F	F	F	F	T	F	F
F	T	T	F	T	T	T
T	F	T	F	T	T	T
T	T	F	T	F	T	F

Answer: $(\neg(P \wedge Q)) \wedge(P \vee Q)$. Other answers are possible.
2. What can we put in the blank to make the identity correct?
$(A \Delta B) \cap C=(C \backslash A) \Delta$ \qquad

Answer: $C \backslash B$. The simplest justification is by Venn diagram. $A \triangle B$ is the regions $1,2,5,6$; intersecting with C gives the regions 5, 6. $C \backslash A$ is the regions 4,6 , while $C \backslash B$ is the regions 4,5 . Taking the symmet-
 ric difference gives the regions 5,6 .
3. Find a formula involving only the connectives \neg and \rightarrow that is equivalent to $P \leftrightarrow Q$.

Answer: $\neg((P \rightarrow Q) \rightarrow \neg(Q \rightarrow P))$. This is equivalent to $\neg(\neg(P \rightarrow Q) \vee \neg(Q \rightarrow P))$ by the conditional law, which is equivalent to $\neg \neg(P \rightarrow Q) \wedge \neg \neg(Q \rightarrow P)$ by the second DeMorgan's law, which is equivalent to $(P \rightarrow Q) \wedge(Q \rightarrow P)$ by the double negation law (twice), which is equivalent to $P \leftrightarrow Q$ by the definition of biconditional.
4. Determine whether or not the following statements are equivalent: $(\exists x \in A P(x)) \wedge$ $(\exists x \in B P(x)) \quad$ and $\exists x \in(A \cap B) P(x)$.
Answer: no. Here is a counterexample: let $A=\{2,4\}, B=\{3\}$, and let $P(x)$ stand for the sentence "x is prime". A, B each contains a prime, but $A \cap B$ is empty, so does not contain a prime.
5. Prove that $\mathscr{P}(A \cap B)=\mathscr{P}(A) \cap \mathscr{P}(B)$.
\subseteq : Let $x \in \mathscr{P}(A \cap B)$. Then $x \subseteq A \cap B$. For all $y \in x, y \in A \cap B$. In particular, $\forall y \in x, y \in A$ (thus $x \subseteq A$) and $\forall y \in x, y \in B$ (thus $x \subseteq B$). Because $x \subseteq A$, $x \in \mathscr{P}(A)$; because $x \subseteq B, x \in \mathscr{P}(B)$. Combining these we get $x \in \mathscr{P}(A) \cap \mathscr{P}(B)$.
\supseteq : Let $x \in \mathscr{P}(A) \cap \mathscr{P}(B)$. Then $x \in \mathscr{P}(A)$ and $x \in \mathscr{P}(B)$, so $x \subseteq A$ and $x \subseteq B$. For all $y \in x, y \in A$ and $y \in B$, so $y \in A \cap B$. Hence $x \subseteq A \cap B$ and thus $x \in \mathscr{P}(A \cap B)$.
6. Suppose that $A \backslash B \subseteq C \cap D$ and $x \in A$. Prove that if $x \notin D$ then $x \in B$.

Suppose that $A \backslash B \subseteq C \cap D, x \in A$, and $x \notin B$. Combining $x \in A$ and $x \notin B$ we get $x \in A \backslash B$. Because $A \backslash B \subseteq C \cap D$ we get $x \in C \cap D$, and in particular $x \in D$. We have proved that $x \notin B$ implies $x \in D$; the contrapositive of this is the desired goal.
7. Suppose that $x, y \in \mathbb{R}$. Prove that if $x \neq 0$, then if $y=\frac{3 x^{2}+2 y}{x^{2}+2}$ then $y=3$.

Suppose that $x \neq 0$ and $y=\frac{3 x^{2}+2 y}{x^{2}+2}$. Multiplying by the nonzero $x^{2}+2$ we get $y x^{2}+2 y=3 x^{2}+2 y$. Subtracting $2 y$ we get $y x^{2}=3 x^{2}$. Dividing by the nonzero x^{2} we get $y=3$, as desired.
8. Prove that if A and $B \backslash C$ are disjoint, then $A \cap B \subseteq C$.

Suppose that A and $B \backslash C$ are disjoint. Let $x \in A \cap B$; hence $x \in A$ and $x \in B$. We argue by contradiction. Suppose that $x \notin C$. Combining with $x \in B$ we get $x \in B \backslash C$. But also $x \in A$; yet A and $B \backslash C$ are disjoint. This contradiction proves that $x \in C$. Since x was arbitrary in $A \cap B$, we have shown that $A \cap B \subseteq C$.
9. Prove that for every integer n, n^{3} is even iff n is even.

Let n be an integer. We proceed by cases, depending on if n is even or odd. If n is even, then for some integer $m, n=2 m$. Then $n^{3}=(2 m)^{3}=8 m^{3}=2\left(4 m^{3}\right)$, twice an integer, which is even. This proves that if n is even then n^{3} is even.
If n is odd, then for some integer $k, n=2 k+1$. Then $n^{3}=(2 k+1)^{3}=8 k^{3}+12 k^{2}+$ $6 k+1=2\left(4 k^{3}+6 k^{2}+3 k\right)+1$, which is odd. This proves that if n is not even, then n^{3} is not even.
10. Prove that for any sets A and B, if $\mathscr{P}(A) \cup \mathscr{P}(B)=\mathscr{P}(A \cup B)$ then either $A \subseteq B$ or $B \subseteq A$.
(method 1) Suppose that $\mathscr{P}(A) \cup \mathscr{P}(B)=\mathscr{P}(A \cup B)$. We argue by contradiction. Suppose that $\neg(A \subseteq B \vee B \subseteq A)$ holds. Hence $\neg(A \subseteq B) \wedge \neg(B \subseteq A)$ holds, by DeMorgan's second law. Hence $\neg(\forall x \in A x \in B) \wedge \neg(\forall y \in B y \in A)$. Hence $(\exists x \in A x \notin B) \wedge(\exists y \in B y \notin A)$. Now, consider the set $\{x, y\}$; let's name it z. Since $x, y \in A \cup B$, we have $z \subseteq A \cup B$ so $z \in \mathscr{P}(A \cup B)$. But $z \nsubseteq A$ since $y \notin A$; hence $z \notin \mathscr{P}(A)$. Also, $z \nsubseteq B$ since $x \notin B$; hence $z \notin \mathscr{P}(B)$. But this contradicts $z \in \mathscr{P}(A) \cup \mathscr{P}(B)$, which completes the proof.
(method 2) Suppose that $\mathscr{P}(A) \cup \mathscr{P}(B)=\mathscr{P}(A \cup B)$. We argue by cases. Either $A \subseteq B$ or $A \nsubseteq B$. In the first case, we are done. In the second case, $\neg(A \subseteq B)$ holds, so $\neg(\forall x \in A x \in B)$. This implies that $\exists x \in A x \notin B$. Now, let $y \in B$. Consider the set $\{x, y\}$; let's name it z. Since $x, y \in A \cup B$, we have $z \subseteq A \cup B$ so $z \in \mathscr{P}(A \cup B)$. But $z \nsubseteq B$ since $x \notin B$; hence $z \notin \mathscr{P}(B)$. Because $z \in \mathscr{P}(A) \cup \mathscr{P}(B)$, in fact $z \in \mathscr{P}(A)$. Hence $y \in A$. Since $y \in B$ was arbitrary, we have proved that $B \subseteq A$.

