Math 245 Spring 2013 Midterm Solutions

1. Find a formula involving the connectives \lor, \land , and \neg that has this truth table:

	Р	Q	???	$P \wedge Q$	$\neg (P \land Q)$	$P \vee Q$	$(\neg (P \land Q)) \land (P \lor Q)$
_	F	F	F	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
	F	Т	Т	F	Т	Т	Т
	Т	\mathbf{F}	Т	\mathbf{F}	Т	Т	Т
	Т	Т	F	Т	\mathbf{F}	Т	\mathbf{F}

Answer: $(\neg (P \land Q)) \land (P \lor Q)$. Other answers are possible.

2. What can we put in the blank to make the identity correct? $(A \triangle B) \cap C = (C \setminus A) \triangle$

Answer: $C \setminus B$. The simplest justification is by Venn diagram. $A \triangle B$ is the regions 1, 2, 5, 6; intersecting with C gives the regions 5, 6. $C \setminus A$ is the regions 4, 6, while $C \setminus B$ is the regions 4, 5. Taking the symmetric difference gives the regions 5, 6.

- 3. Find a formula involving only the connectives \neg and \rightarrow that is equivalent to $P \leftrightarrow Q$. Answer: $\neg((P \rightarrow Q) \rightarrow \neg(Q \rightarrow P))$. This is equivalent to $\neg(\neg(P \rightarrow Q) \lor \neg(Q \rightarrow P))$ by the conditional law, which is equivalent to $\neg\neg(P \rightarrow Q) \land \neg\neg(Q \rightarrow P)$ by the second DeMorgan's law, which is equivalent to $(P \rightarrow Q) \land (Q \rightarrow P)$ by the double negation law (twice), which is equivalent to $P \leftrightarrow Q$ by the definition of biconditional.
- 4. Determine whether or not the following statements are equivalent: $(\exists x \in A \ P(x)) \land (\exists x \in B \ P(x))$ and $\exists x \in (A \cap B) \ P(x)$.

Answer: no. Here is a counterexample: let $A = \{2, 4\}, B = \{3\}$, and let P(x) stand for the sentence "x is prime". A, B each contains a prime, but $A \cap B$ is empty, so does not contain a prime.

5. Prove that $\mathscr{P}(A \cap B) = \mathscr{P}(A) \cap \mathscr{P}(B)$.

 \subseteq : Let $x \in \mathscr{P}(A \cap B)$. Then $x \subseteq A \cap B$. For all $y \in x, y \in A \cap B$. In particular, $\forall y \in x, y \in A$ (thus $x \subseteq A$) and $\forall y \in x, y \in B$ (thus $x \subseteq B$). Because $x \subseteq A$, $x \in \mathscr{P}(A)$; because $x \subseteq B, x \in \mathscr{P}(B)$. Combining these we get $x \in \mathscr{P}(A) \cap \mathscr{P}(B)$.

 \supseteq : Let $x \in \mathscr{P}(A) \cap \mathscr{P}(B)$. Then $x \in \mathscr{P}(A)$ and $x \in \mathscr{P}(B)$, so $x \subseteq A$ and $x \subseteq B$. For all $y \in x, y \in A$ and $y \in B$, so $y \in A \cap B$. Hence $x \subseteq A \cap B$ and thus $x \in \mathscr{P}(A \cap B)$.

- 6. Suppose that $A \setminus B \subseteq C \cap D$ and $x \in A$. Prove that if $x \notin D$ then $x \in B$.
- Suppose that $A \setminus B \subseteq C \cap D$, $x \in A$, and $x \notin B$. Combining $x \in A$ and $x \notin B$ we get $x \in A \setminus B$. Because $A \setminus B \subseteq C \cap D$ we get $x \in C \cap D$, and in particular $x \in D$. We have proved that $x \notin B$ implies $x \in D$; the contrapositive of this is the desired goal.
- 7. Suppose that $x, y \in \mathbb{R}$. Prove that if $x \neq 0$, then if $y = \frac{3x^2+2y}{x^2+2}$ then y = 3.

Suppose that $x \neq 0$ and $y = \frac{3x^2+2y}{x^2+2}$. Multiplying by the nonzero $x^2 + 2$ we get $yx^2 + 2y = 3x^2 + 2y$. Subtracting 2y we get $yx^2 = 3x^2$. Dividing by the nonzero x^2 we get y = 3, as desired.

8. Prove that if A and $B \setminus C$ are disjoint, then $A \cap B \subseteq C$.

Suppose that A and $B \setminus C$ are disjoint. Let $x \in A \cap B$; hence $x \in A$ and $x \in B$. We argue by contradiction. Suppose that $x \notin C$. Combining with $x \in B$ we get $x \in B \setminus C$. But also $x \in A$; yet A and $B \setminus C$ are disjoint. This contradiction proves that $x \in C$. Since x was arbitrary in $A \cap B$, we have shown that $A \cap B \subseteq C$.

9. Prove that for every integer n, n^3 is even iff n is even.

Let n be an integer. We proceed by cases, depending on if n is even or odd. If n is even, then for some integer m, n = 2m. Then $n^3 = (2m)^3 = 8m^3 = 2(4m^3)$, twice an integer, which is even. This proves that if n is even then n^3 is even.

If n is odd, then for some integer k, n = 2k + 1. Then $n^3 = (2k + 1)^3 = 8k^3 + 12k^2 + 6k + 1 = 2(4k^3 + 6k^2 + 3k) + 1$, which is odd. This proves that if n is not even, then n^3 is not even.

10. Prove that for any sets A and B, if $\mathscr{P}(A) \cup \mathscr{P}(B) = \mathscr{P}(A \cup B)$ then either $A \subseteq B$ or $B \subseteq A$.

(method 1) Suppose that $\mathscr{P}(A) \cup \mathscr{P}(B) = \mathscr{P}(A \cup B)$. We argue by contradiction. Suppose that $\neg(A \subseteq B \lor B \subseteq A)$ holds. Hence $\neg(A \subseteq B) \land \neg(B \subseteq A)$ holds, by DeMorgan's second law. Hence $\neg(\forall x \in A \ x \in B) \land \neg(\forall y \in B \ y \in A)$. Hence $(\exists x \in A \ x \notin B) \land (\exists y \in B \ y \notin A)$. Now, consider the set $\{x, y\}$; let's name it z. Since $x, y \in A \cup B$, we have $z \subseteq A \cup B$ so $z \in \mathscr{P}(A \cup B)$. But $z \not\subseteq A$ since $y \notin A$; hence $z \notin \mathscr{P}(A)$. Also, $z \not\subseteq B$ since $x \notin B$; hence $z \notin \mathscr{P}(B)$. But this contradicts $z \in \mathscr{P}(A) \cup \mathscr{P}(B)$, which completes the proof.

(method 2) Suppose that $\mathscr{P}(A) \cup \mathscr{P}(B) = \mathscr{P}(A \cup B)$. We argue by cases. Either $A \subseteq B$ or $A \not\subseteq B$. In the first case, we are done. In the second case, $\neg(A \subseteq B)$ holds, so $\neg(\forall x \in A \ x \in B)$. This implies that $\exists x \in A \ x \notin B$. Now, let $y \in B$. Consider the set $\{x, y\}$; let's name it z. Since $x, y \in A \cup B$, we have $z \subseteq A \cup B$ so $z \in \mathscr{P}(A \cup B)$. But $z \not\subseteq B$ since $x \notin B$; hence $z \notin \mathscr{P}(B)$. Because $z \in \mathscr{P}(A) \cup \mathscr{P}(B)$, in fact $z \in \mathscr{P}(A)$. Hence $y \in A$. Since $y \in B$ was arbitrary, we have proved that $B \subseteq A$.